Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Braz J Med Biol Res ; 46(8): 715-21, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23969978

RESUMO

Immobilization, used in clinical practice to treat traumatologic problems, causes changes in muscle, but it is not known whether changes also occur in nerves. We investigated the effects of immobilization on excitability and compound action potential (CAP) and the ultrastructure of the rat sciatic nerve. Fourteen days after immobilization of the right leg of adult male Wistar rats (n=34), animals were killed and the right sciatic nerve was dissected and mounted in a moist chamber. Nerves were stimulated at a baseline frequency of 0.2 Hz and tested for 2 min at 20, 50, and 100 Hz. Immobilization altered nerve excitability. Rheobase and chronaxy changed from 3.13 ± 0.05 V and 52.31 ± 1.95 µs (control group, n=13) to 2.84 ± 0.06 V and 59.71 ± 2.79 µs (immobilized group, n=15), respectively. Immobilization altered the amplitude of CAP waves and decreased the conduction velocity of the first CAP wave (from 93.63 ± 7.49 to 79.14 ± 5.59 m/s) but not of the second wave. Transmission electron microscopy showed fragmentation of the myelin sheath of the sciatic nerve of immobilized limbs and degeneration of the axon. In conclusion, we demonstrated that long-lasting leg immobilization can induce alterations in nerve function.


Assuntos
Potenciais de Ação/fisiologia , Membro Posterior/inervação , Imobilização/efeitos adversos , Degeneração Neural/fisiopatologia , Nervo Isquiático/fisiopatologia , Animais , Cronaxia/fisiologia , Masculino , Microscopia Eletrônica de Transmissão , Bainha de Mielina/fisiologia , Ratos Wistar , Fatores de Tempo
2.
Braz. j. med. biol. res ; 46(8): 715-721, ago. 2013. tab, graf
Artigo em Inglês | LILACS | ID: lil-684533

RESUMO

Immobilization, used in clinical practice to treat traumatologic problems, causes changes in muscle, but it is not known whether changes also occur in nerves. We investigated the effects of immobilization on excitability and compound action potential (CAP) and the ultrastructure of the rat sciatic nerve. Fourteen days after immobilization of the right leg of adult male Wistar rats (n=34), animals were killed and the right sciatic nerve was dissected and mounted in a moist chamber. Nerves were stimulated at a baseline frequency of 0.2 Hz and tested for 2 min at 20, 50, and 100 Hz. Immobilization altered nerve excitability. Rheobase and chronaxy changed from 3.13±0.05 V and 52.31±1.95 µs (control group, n=13) to 2.84±0.06 V and 59.71±2.79 µs (immobilized group, n=15), respectively. Immobilization altered the amplitude of CAP waves and decreased the conduction velocity of the first CAP wave (from 93.63±7.49 to 79.14±5.59 m/s) but not of the second wave. Transmission electron microscopy showed fragmentation of the myelin sheath of the sciatic nerve of immobilized limbs and degeneration of the axon. In conclusion, we demonstrated that long-lasting leg immobilization can induce alterations in nerve function.


Assuntos
Animais , Masculino , Potenciais de Ação/fisiologia , Membro Posterior/inervação , Imobilização/efeitos adversos , Degeneração Neural/fisiopatologia , Nervo Isquiático/fisiopatologia , Cronaxia/fisiologia , Microscopia Eletrônica de Transmissão , Bainha de Mielina/fisiologia , Ratos Wistar , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA